

Recent advances on the Smoluchowski coagulation equation under non-equilibrium conditions
De Alessia Nota


High-dimentional classification with deep neural networks: decision boundaries, noise, and margin
De Philipp Petersen
De Li Wang
Apparaît dans la collection : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
We develop a numerical method for the Levy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold non locality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other comes from long-time/small mean-free-path scaling, which calls for a uniform stable solver. To resolve the first difficulty, we use a change of variable to convert the unbounded domain into a bounded one and then apply Chebyshev polynomial based pseudo-spectral method. To resolve the second issue, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that uses the structure of the test function in proving the fractional diffusion limit analytically.