00:00:00 / 00:00:00

Ambitropical Convexity, Mean Payoff Games and Nonarchimedean Convex Programming

De Stéphane Gaubert

Apparaît dans la collection : Combinatorics and Arithmetic for Physics: special days

Convex sets can be defined over ordered fields with a non-archimedean valuation. Then, tropical convex sets arise as images by the valuation of non-archimedean convex sets. The tropicalization of polyhedra and spectrahedra can be described in terms of deterministic and stochastic games with mean payoff, being characterized in terms of sub or super-fixed point sets of Shapley operators, which determine the value of the game. This is motivated by open complexity issues in linear programming. We shall discuss here especially a generalization of tropical convexity: considering fixed point sets of Shapley operators, instead of sub or super-fixed points sets, leads to a richer “ambitropical” theory, which includes tropical convexity and its dual in a unified framework. We shall present several characterizations of ambitropical convex sets, with features related to normed spaces (nonexpansive retracts and hyperconvexity), lattice theory (order preserving retracts), or of a combinatorial nature (cell decompositions in alcoved polyhedra).

The results on ambitropical convexity is from a work with Akian and Vannucci; the ones on the tropicalization of nonarchimedean convex sets are from works with Allamigeon, Benchimol, Joswig and Skomra.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow


  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis