00:00:00 / 00:00:00

Almost periodicity from a model-theoretic perspective

De Amador Martin-Pizarro

Apparaît dans la collection : Model Theory and Applications to Groups and Combinatorics / Théorie des modèles et applications en théorie des groupes et en combinatoire

Roth's theorem states that a subset $A$ of ${1, \ldots, N}$ of positive density contains a positive $N^2$-proportion of (non-trivial) three arithmetic progressions, given by pairs $(a, d)$ with $d \neq 0$ such that $a, a+d, a+2 d$ all lie in $A$. In recent breakthrough work by Kelley and Meka, the known bounds have been improved drastically. One of the core ingredients of the their proof is a version of the almost periodicity result due to Croot and Sisask. The latter has been obtained in a non-quantitative form by Conant and Pillay for amenable groups using continuous logic. In joint work with Daniel Palacín, we will present a model-theoretic version (in classical first-order logic) of the almost-periodicity result for a general group equipped with a Keisler measure under some mild assumptions and show how to use this result to obtain a non-quantitative proof of Roth's result. One of the main ideas of the proof is an adaptation of a result of Pillay, Scanlon and Wagner on the behaviour of generic types in a definable group in a simple theory.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20252703
  • Citer cette vidéo Martin-Pizarro, Amador (03/10/2024). Almost periodicity from a model-theoretic perspective. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20252703
  • URL https://dx.doi.org/10.24350/CIRM.V.20252703

Domaine(s)

Bibliographie

  • MARTIN-PIZARRO, Amador et PALACÍN, Daniel. Complete type amalgamation for nonstandard finite groups. Model Theory, 2024, vol. 3, no 1, p. 1-37. - https://doi.org/10.2140/mt.2024.3.1

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis