00:00:00 / 00:00:00

Apparaît dans la collection : Bourbaki - Novembre 2019

Nous présenterons le contexte ainsi que certaines des idées menant à la démonstration par Asaoka et Irie du résultat suivant: $\mathbb C^\infty$-génériquement, les orbites périodiques d'un difféomorphisme hamiltonien d'une surface compacte sont denses. C'est une conséquence d'un résultat analogue pour les flots de Reeb en dimension 3, obtenu par Irie et basé sur une théorie très sophistiquée due à Hutchings, l'homologie de contact plongée. Nous verrons que le point clé de cette démonstration est la « conjecture du volume », établie par Cristofaro-Gardiner, Hutchings et Ramos. Selon celle-ci, le volume d'une forme de contact s'obtient comme limite de certains invariants extraits de l'homologie de contact plongée que nous présenterons.

[D'après Irie et Asaoka]

Informations sur la vidéo

Bibliographie

Séminaire Bourbaki, 72ème année (2019-2020), n°1168, novembre 2019 PDF

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis