00:00:00 / 00:00:00

Apparaît dans la collection : Bourbaki - Mars 2018

Les matroïdes finis sont des structures combinatoires qui expriment la notion d’indépendance linéaire. En 1964, G. -C. Rota conjectura que les coefficients du « polynôme caractéristique » d’un matroïde $M$, polynôme dont les coefficients énumèrent ses sous–ensembles de rang donné, forment une suite log–concave. K. Adiprasito, E. Katz et J. Huh viennent de démontrer cette conjecture par des méthodes qui, bien qu’entièrement combinatoires, sont inspirées par la géométrie algébrique. À partir de l’éventail de Bergman du matroïde $M$, ils définissent en effet un « anneau de Chow » gradué $A(M)$ pour lequel ils établissent des analogues de la dualité de Poincaré, du théorème de Lefschetz difficile et des relations de Hodge–Riemann. Les inégalités de log–concavité recherchées sont alors analogues aux inégalités de Khovanskii–Teissier.

[D'après Adiprasito, Huh et Katz]

Informations sur la vidéo

Bibliographie

Séminaire Bourbaki, 70ème année (2017-2018), n°1144, mars 2018 PDF

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis