

Locally homogeneous flows and Anosov representations (5/5)
De Daniel Monclair


Harmonic maps in high-dimensional spheres, representations and random matrices (4/4)
De Antoine Song
Apparaît dans la collection : Bourbaki - Novembre 2015
La conjecture de Hilbert-Smith en dimension n affirme que, si G est un groupe topologique localement compact qui admet une injection continue dans le groupe d'homéomorphismes d'une variété connexe de dimension n, alors G est un groupe de Lie. Nous décrirons la preuve du cas n = 3, due à J. Pardon. Cette preuve utilise des outils divers tels que l'homologie de Čech, la topologie des variétés de dimension 3, la théorie des surfaces minimales et des résultats de J. Nielsen sur les groupes modulaires des surfaces hyperboliques.
[D’après J. Pardon]
Séminaire Bourbaki, 68ème année (2015-2016), n°1106, novembre 2015 PDF