Synthetic mathematics, logic-affine computation and efficient proof systems / Mathématiques synthétiques, calcul logique affine et systèmes de preuve efficients

Collection Synthetic mathematics, logic-affine computation and efficient proof systems / Mathématiques synthétiques, calcul logique affine et systèmes de preuve efficients

Organisateur(s) Blechschmidt, Ingo ; Cohen, Liron ; Coquand, Thierry ; Negri, Sara ; Schuster, Peter
Date(s) 08/09/2025 - 12/09/2025
URL associée https://conferences.cirm-math.fr/3377.html
00:00:00 / 00:00:00
2 5

Hyland's effective topos Eff models extensional type theory with an impredicative universe of propositions, as it does any (elementary) topos. Remarkably, it contains another impredicative universe which turns out not to be a poset, that of so-called modest sets. This fact ensures that Eff also models type theories like System F and the Calculus of Constructions. Impredicative encodings of type constructors, while very economical, often fail to satisfy a certain uniqueness principle (the so-called eta-rules) and, in turn, do not have dependent eliminators and thus do not support proofs by induction. Awodey, Frey and Speight have shown how to use a univalent impredicative universe to produce encodings that do enjoy (propositional) eta-rules and dependent eliminators. It is then natural to look for a semantic setting where to carry out such encodings. Current approaches to higher versions of Eff often take simplicial or cubical sets inside Eff or inside its subcategory of assemblies. It was shown, however, that the subcategory of 0-types (the sets) in these higher toposes is not Eff. I will present work in progress with Steve Awodey where we construct a candidate effective 2-topos that does contain Eff as its subcategory of 0-types. An infinity version of this construction is being investigated by Anel, Awodey and Barton.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20388103
  • Citer cette vidéo Emmenegger, Jacopo (09/09/2025). Towards the effective 2-topos. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20388103
  • URL https://dx.doi.org/10.24350/CIRM.V.20388103

Bibliographie

  • ANEL, Mathieu, AWODEY, Steve et BARTON , Reid. Towards the effective infty-topos, 2025. (in preparation)
  • AWODEY, Steve et EMMENEGGER, Jacopo. Toward the effective 2-topos. arXiv preprint arXiv:2503.24279, 2025. - https://doi.org/10.48550/arXiv.2503.24279
  • AWODEY, Steve, FREY, Jonas, et SPEIGHT, Sam. Impredicative encodings of (higher) inductive types. In : Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. 2018. p. 76-85. - https://doi.org/10.1145/3209108.3209130
  • HYLAND, J. Martin E. The effective topos. In : Studies in Logic and the Foundations of Mathematics. Elsevier, 1982. p. 165-216. - https://doi.org/10.1016/S0049-237X(09)70129-6
  • HYLAND, J. Martin E. A small complete category. Annals of pure and applied logic, 1988, vol. 40, no 2, p. 135-165. - https://doi.org/10.1016/0168-0072(88)90018-8
  • HYLAND, J. Martin E., ROBINSON, Edmund P., et ROSOLINI, Giuseppe. The discrete objects in the effective topos. Proceedings of the London mathematical society, 1990, vol. 3, no 1, p. 1-36. - https://doi.org/10.1112/plms/s3-60.1.1
  • HU, Hongde et THOLEN, Walter. A note on free regular and exact completions and their infinitary generalizations. Theory and applications of categories, 1996, vol. 2, no 10, p. 113-132. - https://www.emis.de/journals/TAC/volumes/1996/n10/2-10abs.html
  • JOYAL, André et TIERNEY, Myles. Strong stacks and classifying spaces. In : Category Theory: Proceedings of the International Conference held in Como, Italy, July 22–28, 1990. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. p. 213-236. - https://doi.org/10.1007/BFb0084222
  • LACK, Stephen. A note on the exact completion of a regular category, and its infinitary generalizations. Theory Appl. Categ, 1999, vol. 5, no 3, p. 70-80. - http://eudml.org/doc/119736
  • SHULMAN, Michael. All $(\infty, 1) $-toposes have strict univalent universes. arXiv preprint arXiv:1904.07004, 2019. - https://doi.org/10.48550/arXiv.1904.07004
  • SWAN, Andrew W. et UEMURA, Taichi. On Church's thesis in cubical assemblies. Mathematical Structures in Computer Science, 2021, vol. 31, no 10, p. 1185-1204. - https://doi.org/10.1017/S0960129522000068

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis