School/Workshop: Energy, mathematics, and theoretical challenges

Collection School/Workshop: Energy, mathematics, and theoretical challenges

Organisateur(s) Bouchet, Freddy ; Hoarau, Quentin ; Lancelin, Amaury ; Pommeret, Aude
Date(s) 30/09/2024 - 04/10/2024
URL associée https://mathphysenergie.sciencesconf.org
00:00:00 / 00:00:00
14 21

Artificial intelligence, data assimilation, and data-driven surrogate models for the climate

De Marc Bocquet

Artificial intelligence, and particularly deep learning, revolutionised numerical weather prediction (NWP) in 2023. Several teams from giant tech companies have proposed surrogate models for high-resolution global atmospheric dynamics. These models achieve the performance levels of the deterministic IFS of the European Centre for Medium-Range Weather Forecasts, as well as its ensemble prediction variant. In this presentation, I will discuss the techniques used to construct these models, their scope and limitations, and illustrate the concepts with our own models and results, in NWP and sea-ice models for climate. I will also discuss the integration of such surrogate models with data assimilation for the improvement of NWP, as well as some more fundamental issues related to the end-to-end approaches to data assimilation.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis