PRACQSYS 2018: Principles and Applications of Control in Quantum Systems

Collection PRACQSYS 2018: Principles and Applications of Control in Quantum Systems

Organisateur(s) Brion, Etienne ; Diamanti, Eleni ; Ourjoumtsev, Alexei ; Rouchon, Pierre
Date(s) 02/07/2018 - 06/07/2018
URL associée https://sites.google.com/view/mcqs2018/pracqsys-2018
00:00:00 / 00:00:00
12 29

Experimental optical phase measurement at the exact Heisenberg limit

De Howard M. Wiseman

The task of ab initio optical phase measurement — the estimation of a completely unknown phase —has been experimentally demonstrated with precision scaling like the ultimate bound, the Heisenberg limit (HL), but with an overhead factor. This limit is defined in terms of N, the number of photon passes through the phase shift, or, in quantum computing language, the number of applications of a single-qubit phase gate encoding the unknown phase. However, existing approaches have not been able, even in principle, to achieve the best possible precision, i.e. saturating the HL exactly. Here we demonstrate a scheme to achieve true HL phase measurement, using a combination of three techniques: entanglement, multiple samplings of the phase shift, and adaptive measurement. Our experimental demonstration of the scheme, with photonic qubits and N = 3 photon-passes, achieves a precision that is within 4% of the HL, and which clearly surpasses the best precision theoretically achievable with simpler techniques. This work represents a fundamental achievement of the ultimate limits of metrology, and the scheme can be extended to higher N and other physical systems.

Informations sur la vidéo

  • Date de captation 03/07/2018
  • Date de publication 11/07/2018
  • Institut IHP
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis