Perfectly matched perspectives on statistical mechanics, combinatorics and geometry / Perspectives couplées sur la mécanique statistique, la combinatoire et la géométrie

Collection Perfectly matched perspectives on statistical mechanics, combinatorics and geometry / Perspectives couplées sur la mécanique statistique, la combinatoire et la géométrie

Organisateur(s) Boutillier, Cédric ; Chhita, Sunil ; George, Terrence ; Li, Zhongyang ; Tilière, Béatrice de
Date(s) 16/06/2025 - 20/06/2025
URL associée https://conferences.cirm-math.fr/3178.html
00:00:00 / 00:00:00
1 5

The infinite bin model (IBM) is a family of ranked-biased branching random walks on the integers, parameterized by a probability distribution on positive integers. Alternatively it may be seen as a family of interacting particle systems, depicted as balls inside bins. The speed of the front of the IBM depends on the probability distribution which parameterizes it. I will first review some special cases that have been known for some time: the IBM parameterized by the uniform distribution on some finite interval of integers [1,N], which is nothing but a branching random walk with selection, and the IBM parameterized by a geometric distribution, which can be coupled with last passage percolation on the complete graph. Then I will discuss long memory properties of the IBM, in particular whether a site may reproduce infinitely often or not. Finally I will discuss a hydrodynamic limit of the IBM where one can explicitly compute the speed of the front. In that case, a wall-crossing phenomenon appears and Dyck paths come into play. The talk is based on joint works with Bastien Mallein (Université Toulouse III Paul Sabatier), Arvind Singh (CNRS and Université Paris-Saclay) and Benjamin Terlat (Université Paris-Saclay).

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20364603
  • Citer cette vidéo Ramassamy, Sanjay (16/06/2025). The infinite bin model, old and new. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20364603
  • URL https://dx.doi.org/10.24350/CIRM.V.20364603

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis