Nexus Trimester - 2016 - Distributed Computation and Communication Theme

Collection Nexus Trimester - 2016 - Distributed Computation and Communication Theme

Organisateur(s)
Date(s) 19/05/2024
00:00:00 / 00:00:00
42 42

We study communication cost of computing functions when inputs are distributed among k processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges. Our results show the effect of topology of the network on the total communication cost. We prove tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. On the other hand, we show that for a large class of natural functions like Set-Disjointness the communication cost is essentially n times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like ED of XOR and XOR of ED, the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs. To obtain our results, we use some tools like metric embeddings and linear programming whose use in the context of communication complexity is novel as far as we know.

Informations sur la vidéo

  • Date de captation 11/02/2016
  • Date de publication 14/04/2016
  • Institut IHP
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis