New challenges in high-dimensional statistics / Statistique mathématique

Collection New challenges in high-dimensional statistics / Statistique mathématique

Organisateur(s) Klopp, Olga ; Pouet, Christophe ; Rakhlin, Alexander
Date(s) 16/12/2024 - 20/12/2024
URL associée https://conferences.cirm-math.fr/3055.html
00:00:00 / 00:00:00
2 5

From robust tests to robust Bayes-like posterior distribution

De Yannick Baraud

We address the problem of estimating the distribution of presumed i.i.d. observations within the framework of Bayesian statistics. We propose a new posterior distribution that shares some similarities with the classical Bayesian one. In particular, when the statistical model is exact, we show that this new posterior distribution concentrates its mass around the target distribution, just as the classical Bayes posterior would do. However, unlike the Bayes posterior, we prove that these concentration properties remain stable when the equidistribution assumption is violated or when the data are i.i.d. with a distribution that does not belong to our model but only lies close enough to it. The results we obtain are non-asymptotic and involve explicit numerical constants.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20279103
  • Citer cette vidéo Baraud, Yannick (16/12/2024). From robust tests to robust Bayes-like posterior distribution. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20279103
  • URL https://dx.doi.org/10.24350/CIRM.V.20279103

Bibliographie

  • AUDIBERT, Jean-Yves et CATONI, Olivier. Linear regression through PAC-Bayesian truncation. arXiv preprint arXiv:1010.0072, 2010.² - https://doi.org/10.48550/arXiv.1010.0072
  • BARAUD, Yannick. Tests and estimation strategies associated to some loss functions. Probability Theory and Related Fields, 2021, vol. 180, no 3, p. 799-846. - https://doi.org/10.1007/s00440-021-01065-1
  • BARAUD, Yannick. From robust tests to Bayes-like posterior distributions. Probability Theory and Related Fields, 2024, vol. 188, no 1, p. 159-234. - https://doi.org/10.1007/s00440-023-01222-8
  • BIRGÉ, Lucien. About the non-asymptotic behaviour of Bayes estimators. Journal of statistical planning and inference, 2015, vol. 166, p. 67-77. - https://doi.org/10.1016/j.jspi.2014.07.009
  • GHOSAL, Subhashis, GHOSH, Jayanta K., et VAN DER VAART, Aad W. Convergence rates of posterior distributions. Annals of Statistics, 2000, p. 500-531. - https://www.jstor.org/stable/2674039
  • LE CAM, L. On local and global properties in the theory of asymptotic normality of experiments. Stochastic processes and related topics, 1975, vol. 1, p. 13-54. -

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis