Mathematical aspects of the physics with non-self-adjoint operators / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints

Collection Mathematical aspects of the physics with non-self-adjoint operators / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints

Organisateur(s) Boulton, Lyonell ; Cossetti, Lucrezia ; Krejcirik, David ; Siegl, Petr
Date(s) 03/06/2024 - 07/06/2024
URL associée https://conferences.cirm-math.fr/2971.html
00:00:00 / 00:00:00
2 5

In the last decade, there has been an increasing interest in the p-Laplacian, which plays an important role in geometry and partial differential equations. The p-Laplacian is a natural generalization of the Laplacian. Although the Laplacian has been much studied, not much is known about the nonlinear case p >1. Motivated by these facts, the purpose of the present paper is to review recent developments in the spectral theory of a specific class of quantum waveguides modeled by the Dirichlet Laplacian, i.e. p = 2, in unbounded tubes of uniform cross-section rotating w.r.t. the Tang frame along infinite curves in Euclidean spaces of arbitrary dimension. We discuss how the spectrum depends upon three geometric deformations: straightness, asymptotic straightness, and bending. Precisely, if the reference curve is straight or asymptotic straight, the essential spectrum is preserved. While dealing with bent tubes, such geometry produces a spectrum below the first eigenvalue. All the results confirm the literature for the Laplacian operator. The results are obtained via a very delicate analysis since the nonlinearity given by the p-Laplacian operator adds different types of difficulties with respect to the linear situation. These results are contained in a work written jointly with D. Krejčiřík.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20187803
  • Citer cette vidéo Baldelli, Laura (04/06/2024). Curved quantum nonlinear waveguides. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20187803
  • URL https://dx.doi.org/10.24350/CIRM.V.20187803

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis