Jean Morlet Chair - 2020 - Sem 2 - Tichy - Rivat

Collection Jean Morlet Chair - 2020 - Sem 2 - Tichy - Rivat

Organisateur(s) Prof. Robert TICHY ​Technische Universität Graz and Prof. Joël RIVAT Aix-Marseille Université
Date(s) 01/09/2020 - 28/09/2021
URL associée https://www.chairejeanmorlet.com/2020-2-tichy-rivat.html
00:00:00 / 00:00:00
42 56

Apparaît également dans la collection : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire

Zaremba's conjecture belongs to the area of continued fractions. It predicts that for any given positive integer q there is a positive a, a < q, (a,q)=1 such that all partial quotients b_j in its continued fractions expansion a/q = 1/b_1+1/b_2 +... + 1/b_s are bounded by five. At the moment the question is widely open although the area has a rich history of works by Korobov, Hensley, Niederreiter, Bourgain and many others. We survey certain results concerning this hypothesis and show how growth in groups helps to solve different relaxations of Zaremba's conjecture. In particular, we show that a deeper hypothesis of Hensley concerning some Cantor-type set with the Hausdorff dimension >1/2 takes place for the so-called modular form of Zaremba's conjecture.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19689203
  • Citer cette vidéo Shkredov, Ilya (25/11/2020). Zaremba's conjecture and growth in groups. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19689203
  • URL https://dx.doi.org/10.24350/CIRM.V.19689203

Bibliographie

  • HENSLEY, Doug. Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. Journal of number theory, 1992, vol. 40, no 3, p. 336-358. - https://doi.org/10.1016/0022-314X(92)90006-B
  • HELFGOTT, Harald Andrés. Growth and generation in $SL_2 (\mathbb{Z}/p\mathbb{Z})$. Annals of Mathematics, 2008, p. 601-623. - https://www.jstor.org/stable/40345357
  • KOROBOV, Nikolai Mikhailovich. Number-theoretic methods in approximate analysis. 1963.
  • SARNAK, Peter, XUE, Xiaoxi, et al. Bounds for multiplicities of automorphic representations. Duke Mathematical Journal, 1991, vol. 64, no 1, p. 207-227. - http://dx.doi.org/10.1215/S0012-7094-91-06410-0
  • ZAREMBA, Stanisłlaw K. La méthode des “bons treillis” pour le calcul des intégrales multiples. In : Applications of number theory to numerical analysis. Academic Press, 1972. p. 39-119. - https://doi.org/10.1016/B978-0-12-775950-0.50009-1

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis