Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques

Collection Harmonic analysis techniques for elliptic operators / Techniques d'analyse harmonique pour des opérateurs elliptiques

Organisateur(s) Egert, Moritz ; Haller, Robert ; Monniaux, Sylvie ; Tolksdorf, Patrick
Date(s) 17/06/2024 - 21/06/2024
URL associée https://conferences.cirm-math.fr/2972.html
00:00:00 / 00:00:00
4 5

Project cyan: $H^{\infty}$-calculus and square functions on Banach spaces

De Emiel Lorist, Johannes Stojanow, Himani Sharma, Andrew Pritchard

To solve the Kato conjecture in the lectures, we first reformulated the Kato property as a square function estimate. One of the main characters in this reformulation was McIntosh's theorem, which states that a sectorial operator $L$ on a Hilbert space $H$ has a bounded $H^{\infty}$-calculus if and only if for some (equivalently all) nonzero $f \in H_{0}^{\infty}\left(S_{\varphi}\right)$ the quadratic estimate$$\begin{equation²}\left(\int_{0}^{\infty}|f(t L) u|_{H}^{2} \frac{\mathrm{d} t}{t}\right)^{1 / 2} \approx|u|_{H}, \quad u \in H \tag{2.3}\end{equation²}$$holds. Since neither the definition of the $H^{\infty}$-calculus, nor the statement of McIntosh's theorem explicitly use the Hilbert space structure of $H$, one may wonder if this theorem is also true for Banach spaces. This would, for example, be a useful tool in the study of the Kato property in $L^{p}(\Omega)$ with $p \neq 2$.In [1], it was shown that for a sectorial operator $L$ on $L^{p}(\Omega)$ the quadratic estimates need to be adapted, taking the form$$\begin{equation²}\left|\left(\int_{0}^{\infty}|f(t L) u|^{2} \frac{\mathrm{d} t}{t}\right)^{1 / 2}\right|_{L^{p}(\Omega)} \approx|u|_{L^{p}(\Omega)}, \quad u \in L^{p}(\Omega) \tag{2.4}\end{equation²}$$Note that (2.3) and (2.4) coincide for $p=2$ by Fubini's theorem.The connection between $H^{\infty}$-calculus and quadratic estimates in [1] is not yet as clean as the statement we know in the Hilbert space setting. Only after introducing randomness, through a notion called $\mathscr{R}$-sectoriality, we arrive at a formulation in $L^{p}(\Omega)$ fully analogous to McIntosh's theorem [3]. In this project, we will explore the intricacies of McIntosh theorem in $L^{p}(\Omega)$. Moreover, we will discuss what happens in a general Banach space $X$ [2]. Note that (2.4) does not have an obvious interpretation in this case, as $|x|^{2}$ has no meaning for $x \in X$ !

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20191103
  • Citer cette vidéo Lorist, Emiel; Stojanow, Johannes; Sharma, Himani; Pritchard, Andrew (20/06/2024). Project cyan: $H^{\infty}$-calculus and square functions on Banach spaces. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20191103
  • URL https://dx.doi.org/10.24350/CIRM.V.20191103

Bibliographie

  • COWLING, Michael, DOUST, Ian, MICINTOSH, Alan, et al. Banach space operators with a bounded H∞ functional calculus. journal of the australian mathematical society, 1996, vol. 60, no 1, p. 51-89. - https://doi.org/10.1017/S1446788700037393
  • KALTON, Nigel et WEIS, Lutz. The $ H^{\infty} $-Functional Calculus and Square Function Estimates. arXiv preprint arXiv:1411.0472, 2014. - https://doi.org/10.48550/arXiv.1411.0472
  • LE MERDY, Christian. On square functions associated to sectorial operators. Bulletin de la Société Mathématique de France, 2004, vol. 132, no 1, p. 137-156. - https://doi.org/10.24033/bsmf.2462

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis