1 videos

5 videos

7 videos

5 videos

# Collection A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques

Organisateur(s) Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Date(s) 04/09/2023 - 08/09/2023
URL associée https://conferences.cirm-math.fr/2390.html
00:00:00 / 00:00:00
11 15

## Optimal revelated utilities and convex pricing kernels:a forward point of view of convexity propagation

Concave and convex functions are basic functions in economy and finance. In derivatives market, options pay-offs as Call and Put are in general convex functions of their underlying $((x-K)^{+}, or (K-x)^{+})$ and their Black-Scholes Prices are also convex. This property can be maintain in a random universe, (without reference to finance). Here, we are looking for the pricing point of view. The data is an underlying random field, $\left{X_{t}(x) \right}$, non negative with $X_{t}(0)=0$, $X_{t}(+\infty )=\infty$, and a pricing (strictly) convex function $\Phi (0,z)$ whose the right-derivative is denoted $\phi$, given the price today of convex European derivative. The problem is to characterize a convex pricing rule $\left{\Phi (t,z) \right}$ in the future, optimal in the sense that $\left{\Phi (t,X^{t}(x)) \right}$ is a martingale. Obviously, without additional constraint, the problem has many solutions. So, thanks to convexity assumptions, it is natural to introduce the convex conjugate random field $\Psi (t,y)$. By the Fenchel theory, the Gap function $G_{\Phi }(t,z,y)=\Phi (t,z)+\Psi (t,y)-zy\geq 0$, $= 0$ if $\phi (t,z)=y$.

Put $Y_{t}(\phi (z)):=\Phi _{z}(t,X_{t}(z))$. The problem is to solve a be revealed problem find a par of conjugate convex random fields $(\Phi (t,z), \Psi (t,y))$ such that $\Phi (t,X_{t}(x))$ and $\Psi (t,Y_{t}(y))$ are martingales. The Legendre formula implies that $X_{t}(z)Y_{t}(\phi (z))$ is a martingale. As for revealed utility, the problem at least a solution if and only if their exists an equivalent intrinsic framework, where necessary the processes ‘$\left{X_{t}(x) \right},\left{Y_{t}(y) \right},\left{\Phi (t,z) \right}$' are supermartingales, and $\left{X_{t}(x)Y_{t}(\phi (x)) \right}$ is a martingale. The family $\left{Y_{t}(\phi (x)) \right}$ is a family of pricing kernel for $X_{t}(x)$. The relation $Y_{t}(\phi (z)):=\Phi _{z}(t,X_{t}(z))$, and the monotony of $X_{t}(z)$ gives the way to obtained $\Phi _{z}(t,z)=Y_{t}(\phi (X_{t}^{-1}(z)))$ by a pathwise procedure. The convexity of the pricing kernel reduced the arbitrage problems. Itô's semimartingale framework is used to illustrate this characterization. The revealed pricing kernel y is solution of a non-linear SPDE. Many properties can be deduced of this pathwise construction. Joint work Mohamed Mrad.

### Données de citation

• DOI 10.24350/CIRM.V.20088503
• Citer cette vidéo El Karoui, Nicole (07/09/2023). Optimal revelated utilities and convex pricing kernels:a forward point of view of convexity propagation. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20088503
• URL https://dx.doi.org/10.24350/CIRM.V.20088503

### Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

### Poser une question sur MathOverflow

• 35:31
publiée le 27 septembre 2023

## Gambling for resurrection and the heat equation on a triangle

De Christophette Blanchet-Scalliet

52:45
publiée le 27 septembre 2023

## Large random matrices and PDE's

De Pierre-Louis Lions

39:09
publiée le 27 septembre 2023

## Cox Construction: a random walk in the land of stochastic analysis and numerical probability

De Philip Protter

42:40
publiée le 27 septembre 2023

## Construction of Boltzmann and McKean Vlasov type flows (the sewing lemma approach)

De Vlad Bally

45:25
publiée le 27 septembre 2023

## Wasserstein convergence of penalized Markov processes

De Nicolas Champagnat

46:26
publiée le 27 septembre 2023

## Exponent dynamics for branching processes

De Sylvie Méléard

41:21
publiée le 27 septembre 2023

## Propagation of chaos for stochastic particle systems with singular mean-field interaction of $L^{q}-L^{p}$ type

De Milica Tomašević

52:29
publiée le 27 septembre 2023

## Stochastic control for medical treatment optimization

De Benoîte de Saporta

39:27
publiée le 27 septembre 2023

## Systematic jump risk

De Jean Jacod

42:27
publiée le 27 septembre 2023

## Rearranged stochastic heat equation

De François Delarue

43:51
publiée le 27 septembre 2023

## Optimal revelated utilities and convex pricing kernels:a forward point of view of convexity propagation

De Nicole El Karoui

45:32
publiée le 27 septembre 2023

## Functional convex order for stochastic processes: a constructive (and simulable) approach

De Gilles Pagès

48:14
publiée le 27 septembre 2023

## Recent results on epidemic models

De Etienne Pardoux

39:10
publiée le 27 septembre 2023

## Two examples of thermodynamic limits in neuroscience

De Olivier Faugeras

42:30
publiée le 27 septembre 2023

## Conditional propagation of chaos for generalized Hawkes processes having alpha-stable jump heights

De Eva Löcherbach

## Inscrivez-vous

• Mettez des vidéos en favori
• Ajoutez des vidéos à regarder plus tard &
conservez votre historique de consultation
• Commentez avec la communauté
scientifique
• Recevez des notifications de mise à jour
de vos sujets favoris
Donner son avis