2024 - T2 - WS3 - Actions of large groups, geometric structures, and the Zimmer program

Collection 2024 - T2 - WS3 - Actions of large groups, geometric structures, and the Zimmer program

Organisateur(s) Brown, Aaron ; Fisher, David ; Melnick, Karin ; Pecastaing, Vincent
Date(s) 10/06/2024 - 14/06/2024
URL associée https://indico.math.cnrs.fr/event/9046/
3 16

Arithmeticity for Smooth Maximal Rank Positive Entropy Actions of $\mathbb{R}^k$

De Alp Uzman

We prove an arithmeticity theorem in the context of nonuniform measure rigidity. Adapting machinery developed by A. Katok and F. Rodriguez Hertz [J. Mod. Dyn. 10 (2016), 135–172; MR3503686] for $\mathbb{Z}^k$ systems to $\mathbb{R}^k$ systems, we show that any maximal rank positive entropy system on a manifold generated by $k>=2$ commuting vector fields of regularity $\mathbb{C}^k$ for $r>1$ is measure theoretically isomorphic to a constant time change of the suspension of some action of $\mathbb{Z}^k$ on the $(k+1)$-torus or the $(k+1)$-torus modulo {id,-id} by affine automorphisms with linear parts hyperbolic. Further, the constructed conjugacy has certain smoothness properties. This in particular answers a problem and a conjecture from a prequel paper of Katok and Rodriguez Hertz, joint with B. Kalinin [Ann. of Math. (2) 174 (2011), no. 1, 361–400; MR2811602].

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2024.T2.WS3.003
  • Citer cette vidéo Uzman, Alp (10/06/2024). Arithmeticity for Smooth Maximal Rank Positive Entropy Actions of $\mathbb{R}^k$. IHP. Audiovisual resource. DOI: 10.57987/IHP.2024.T2.WS3.003
  • URL https://dx.doi.org/10.57987/IHP.2024.T2.WS3.003

Bibliographie

Alp Uzman : Arithmeticity for Smooth Maximal Rank Positive Entropy Actions of $\mathbb{R}^k$, 2023. arxiv:2307.09433

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis