2023 - T2 - WS2 - Higher structures in enumerative geometry

Collection 2023 - T2 - WS2 - Higher structures in enumerative geometry

Organisateur(s) Behrend, Kai ; Fantechi, Barbara
Date(s) 12/06/2023 - 16/06/2023
URL associée https://indico.math.cnrs.fr/event/7883/
3 18

In this talk, I will show that on a Calabi-Yau threefold (CY3) a genus zero quantum K-invariant (QK) can be written as an integral linear combination of a finite number of Gopakumar–Vafa BPS invariants (GV) with coefficients from an explicit multiple cover formula. Conversely, all Gopakumar–Vafa invariants can be determined by a finite number of quantum K-invariants in a similar manner. The technical heart is a proof of a remarkable conjecture by Hans Jockers and Peter Mayr. This result is consistent with the “virtual Clemens conjecture” for the Calabi–Yau threefolds. A heuristic derivation of the relation between QK and GV via the virtual Clemens conjecture and a “multiple cover formula” will also be explained. This is a joint work with You-Cheng Chou.

Informations sur la vidéo

Données de citation

Bibliographie

  • (Y.-C. Chou and Y.-P. Lee) Quantum K-invariants and Gopakumar-Vafa invariants I. The quintic threefold, arXiv:2211.00788
  • (Y.-C. Chou and Y.-P. Lee) Quantum K-invariants and Gopakumar-Vafa invariants II. Calabi-Yau threefolds at genus zero, arXiv:2305.08480
  • (Y.-C. Chou and Y.-P. Lee) Gopakumar-Vafa Invariants = Quantum K-invariants on Calabi-Yau threefolds, arXiv:2212.13432

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis