2022 - T2 - WS2 - Self-similarity of groups, trees and fractals

Collection 2022 - T2 - WS2 - Self-similarity of groups, trees and fractals

Organisateur(s) Erschler, Anna ; Leemann, Paul-Henry ; Nagnibeda, Tatiana ; Skipper, Rachel
Date(s) 30/05/2022 - 03/06/2022
URL associée https://indico.math.cnrs.fr/event/6576/
2 14

Orders on metric spaces and invariants

De Ivan Mitrofanov

Let $M$ be a metric space and let $T$ be a total ordering of its points. For a finite subset $X\subset M$ we calculate the minimal length $l_{opt}(X)$ of a path visiting all its points, the length $l_T(X)$ of the path which visits the points of $X$ with respect to the order $T$, and the ratio $r_T(X) = l_T(X)/l_{opt}(X)$. As J. Bartholdi and J.Platzman noticed in 1982, for the square $[0;1]^2$ and the order corresponding to the self-similar Peano curve all such ratios $r_T(X)$ are bounded by a logarithmic function of $|X|$. For a given metric space the existence of such "good" orders is connected with more traditional properties and invariants, such as hyperbolicity, Assouad-Nagata dimension, number of ends and doubling. The talk is based on joint works with Anna Erschler.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T2.WS2.002
  • Citer cette vidéo Mitrofanov, Ivan (01/06/2022). Orders on metric spaces and invariants. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T2.WS2.002
  • URL https://dx.doi.org/10.57987/IHP.2022.T2.WS2.002

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis