2022 - T1 - WS3 - Mathematical models in ecology and evolution

Collection 2022 - T1 - WS3 - Mathematical models in ecology and evolution

Organisateur(s) Calvez, Vincent ; Débarre, Florence ; Garnier, Jimmy ; Véber, Amandine
Date(s) 21/03/2022 - 25/03/2022
URL associée https://matmodecoevo-22.sciencesconf.org/
00:00:00 / 00:00:00
28 43

On the problem of Dockery et al. and the evolution of dispersal

De Adrian Lam

Joint work with Stephen Cantrell, Yuan Lou and Benoît Perthame.

To investigate the evolution of dispersal in spatially heterogeneous environments, Dockery et al. in 1998 formulated a di˙usion-competition system of N species which are identical except for their di˙usion rates, and conjectured that the slowest di˙using species al-ways competitively exclude all its counterparts. A continuum version of the problem was formulated by Perthame and Souganidis in 2016. In this selection-mutation model, the population is structured by both space and the di˙usion rate, and where mutation acts on the latter phenotypic variable. The rare mutation limit of the time-dependent solution is believed to be well described by certain Hamilton-Jacobi equation with a constraint, but rigorous results are limited to the case without spatial structure. In this talk, we will describe some recent progress on both problems by introducing the concept of principal Floquet bundle for parabolic equations.

Informations sur la vidéo

  • Date de publication 13/05/2024
  • Institut IHP
  • Licence CC BY-NC-ND
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis