2022 - T1 - WS3 - Mathematical models in ecology and evolution

Collection 2022 - T1 - WS3 - Mathematical models in ecology and evolution

Organisateur(s) Calvez, Vincent ; Débarre, Florence ; Garnier, Jimmy ; Véber, Amandine
Date(s) 21/03/2022 - 25/03/2022
URL associée https://matmodecoevo-22.sciencesconf.org/
00:00:00 / 00:00:00
37 43

Ancestral lineages in mutation selection equilibria with moving optimum

De Florian Patout

Many populations can somehow adapt to rapid environmental changes. To understand this fast evolution, we investigate the genealogy of individuals inside those populations. More precisely, we use a deterministic model to describe the phenotypic density of a population under selection when the fitness optimum moves at constant speed. We study the inside dynamics of this population using the neutral fractions approach. We then define a Markov process characterizing the distribution of ancestral phenotypic lineages inside the equilibrium. This construction yields qualitative as well as quantitative properties on the phenotype of typical ancestors. In particular, we show that in asexual populations typical ancestors of present individuals carried traits much closer to the fitness optimum than most individuals alive at the same time. We also investigate more deeply the asymptotic regime of small mutation effects. In this regime, we obtain an explicit formula for the typical ancestral lineage using the description of the solutions of Hamilton Jacobi equation as a minimizer of an optimization problem. In addition, we compare our deterministic results on lineages with the lineages of stochastic models.

Informations sur la vidéo

  • Date de publication 13/05/2024
  • Institut IHP
  • Licence CC BY-NC-ND
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis