2016 - T1 - WS5 - Secrecy and privacy theme

Collection 2016 - T1 - WS5 - Secrecy and privacy theme

Organisateur(s) Narayan, Prakash ; Roth, Aaron ; Sarwate, Anand ; Vaikuntanathan, Vinod ; Vadhan, Salil
Date(s) 21/03/2016 - 01/04/2016
URL associée https://web.archive.org/web/20221228152149/http://iss.bu.edu/bobak/csnexus//secrecy.html
00:00:00 / 00:00:00
16 41

Quantum lower bound for inverting a permutation with advice

De Luca Trevisan

Hellman proved that any permutation can be inverted non-trivially fast given pre-computed information. Any permutation $f:[N]−>[N]$ can be inverted in time $T$ given a pre-computed data structure of size $N/T$, up to lower-order terms. In the black-box model, Yao proved the optimality of this trade-off. In particular, a data structure of size of the order o $\sqrt{N}$ allows inversion time of the order o $\sqrt{N}$. Using Grover's algorithm, a quantum algorithm is able to invert any permutation $f:[N]−>[N]$ in time order of $\sqrt{N}$. What gain is possible given pre-computed data? Could we hope for time and data size to be both of the order of $N^{1/4}$? In the black-box model, we show that, given data of size $S$, the time as to be at least of the order of $\sqrt{N/S}$, and so either time or size have to be at least $N^{1/3}$. Our lower bound is not known to be tight, and probably it is not: we believe that, in the black-box model, there is no quantum algorithm that achieves time less than $\sqrt{N}$ using data size less than $\sqrt{N}$. (Joint work with Nayebi, Aaronson and Belov)

Informations sur la vidéo

  • Date de captation 21/03/2016
  • Date de publication 14/04/2016
  • Institut IHP
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis