00:00:00 / 00:00:00

Viscous Hamilton-Jacobi equations in the superquadratic case

De Alessio Porretta

Apparaît dans la collection : Inverse Problems and Control for PDEs and the Hamilton-Jacobi Equation / Problèmes inverses et contrôle des EDP, et équation de Hamilton-Jacobi

We discuss properties of the viscous Hamilton-Jacobi equation$$\begin{cases}u_{t}-\Delta u=|D u|^{p} & \text { in }(0, \infty) \times \Omega, \ u=0 & \text { in }(0, \infty) \times \partial \Omega, \ u(0)=u_{0} & \text { in } \Omega,\end{cases}$$in the super-quadratic case $p>2$. Here $\Omega$ is a bounded domain in $\mathbf{R}^{\mathbf{N}}$. In the super-quadratic regime, solutions may be continuous but with a gradient blow up; in this case the second order equation exhibits very peculiar phenomena. Some properties are similar to first order problems, such as loss of boundary conditions and appearance of singularities, but the presence of diffusion let singularities appear and disappear, in a very unusual way. In the talk I will present results obtained in collaboration with Philippe Souplet which describe the qualitative behavior of the solution, starting from smooth initial data. This includes the analysis of blow-up rates, blow-up profiles, life after blow-up, loss and recovery of boundary conditions.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19934003
  • Citer cette vidéo Porretta, Alessio (16/06/2022). Viscous Hamilton-Jacobi equations in the superquadratic case. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19934003
  • URL https://dx.doi.org/10.24350/CIRM.V.19934003

Bibliographie

  • PORRETTA, Alessio et SOUPLET, Philippe. Analysis of the loss of boundary conditions for the diffusive Hamilton–Jacobi equation. Annales de l'Institut Henri Poincaré C, 2017, vol. 34, no 7, p. 1913-1923. - https://doi.org/10.1016/j.anihpc.2017.02.001
  • PORRETTA, Alessio et SOUPLET, Philippe. Blow-up and regularization rates, loss and recovery of boundary conditions for the superquadratic viscous Hamilton-Jacobi equation. Journal de Mathématiques Pures et Appliquées, 2020, vol. 133, p. 66-117. - https://doi.org/10.1016/j.matpur.2019.02.014

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis