![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Jean-Morlet Chair - Conference - Arithmetic Statistics / Chaire Jean-Morlet - Conférence - Statistiques arithmétiques
Let $E$ be an elliptic curve over the rationals, and let $\chi$ be a Dirichlet character of order $\ell$ for some odd prime $\ell$. Heuristics based on the distribution of modular symbols and random matrix theory have led to conjectures predicting that the vanishing of the twisted $L$-functions $L(E, \chi, s)$ at $s = 1$ is a very rare event (David-Fearnley-Kisilevsky and Mazur-Rubin). In particular, it is conjectured that there are only finitely many characters of order $\ell > 5$ such that $L(E, \chi, 1) = 0$ for a fixed curve $E$. We investigate the case of elliptic curves over function fields. For Dirichlet $L$-functions over function fields, Li and Donepudi-Li have shown how to use the geometry to produce infinitely many characters of order $l \geq 2$ such that the Dirichlet $L$-function $L(\chi, s)$ vanishes at $s = 1/2$, contradicting (the function field analogue of) Chowla's conjecture. We show that their work can be generalized to constant curves $E/\mathbb{F}_q(t)$, and we show that if there is one Dirichlet character $\chi$ of order $\ell$ such that $L(E, \chi, 1) = 0$, then there are infinitely many, leading to some specific examples contradicting (the function field analogue of) the number field conjectures on the vanishing of twisted $L$-functions. Such a dichotomy does not seem to exist for general curves over $\mathbb{F}_q(t)$, and we produce empirical evidence which suggests that the conjectures over number fields also hold over function fields for non-constant $E/\mathbb{F}_q(t)$.