![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Let $q=p^r$, where $p$ is a prime number and $ ß=(\beta_1 ,\ldots ,\beta_r)$ be a basis of $\mathbb{F}_q$ over $\mathbb{F}_p$. Any $\xi \in \mathbb{F}_q$ has a unique representation $\xi =\sum_{i=1}^r x_i \beta _i$ with $x_1,\ldots ,x_r \in \mathbb{F}_p$. The coefficients $x_1,\ldots ,x_r$ are called the digits of $\xi$ with respect to the basis $ß$. The analog of the Rudin-Shapiro function is $R(\xi)=x_1x_2+\cdots + x_{r-1}x_r$. For $f \in \mathbb{F}_q [X]$, non constant and $c\in\mathbb{F}_p$, we obtain some formulas for the number of solutions in $\mathbb{F}_q$ of $R(f(\xi ))=c$. The proof uses the Hooley-Katz bound for the number of zeros of polynomials in $\mathbb{F}_p$ with several variables.
This is a joint work with László Mérai and Arne Winterhof.