00:00:00 / 00:00:00

The information theoretic lower bound for comparison based sorting is (almost) tight, even when there is an arbitrary known distribution on the input array

De Shay Moran

Apparaît dans la collection : 2016 - T1 - WS3 - Central workshop

I will discuss the classical problem of sorting n elements when the input array is drawn from an arbitrary known distribution and the goal is to minimize the expected number of comparisons. I will present a simple variant of insertion sort which provides tight upper bound: If μ is a distribution on permutations on n elements, then one may sort inputs from μ with expected number of comparisons that is at most H(μ)+2n, where H is the entropy function. The algorithm uses less comparisons for more probable inputs: For every permutation π, the algorithm sorts π by using at most log_2(1/Pr_μ(π))+2n comparisons. A lower bound on the expected number of comparisons of H(μ) always holds, and a linear dependence on n is also required. I will also suggest directions for further research. The talk is based on a joint work with Amir Yehudayoff.

Informations sur la vidéo

  • Date de captation 29/02/2016
  • Date de publication 14/03/2016
  • Institut IHP
  • Licence CC BY-NC-ND
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis