

Frieze patterns from a geometric point of view: projective geometry and difference equations
De Valentin Ovsienko


Around proper actions on homogeneous spaces (Part 3a/3)
De Maciej Bocheński
Apparaît dans les collections : Jean-Morlet Chair: Ergodic theory and its connections with arithmetic and combinatorics / Chaire Jean Morlet : Théorie ergodique et ses connexions avec l'arithmétique et la combinatoire, Exposés de recherche
Given a finite group $G$ and a set $A$ of generators, the diameter diam$(\Gamma(G, A))$ of the Cayley graph $\Gamma(G, A)$ is the smallest $\ell$ such that every element of $G$ can be expressed as a word of length at most $\ell$ in $A \cup A^{-1}$. We are concerned with bounding diam$(G) := max_A$ diam$(\Gamma(G, A))$. It has long been conjectured that the diameter of the symmetric group of degree $n$ is polynomially bounded in $n$. In 2011, Helfgott and Seress gave a quasipolynomial bound, namely, $O\left (e^{(log n)^{4+\epsilon}}\right )$. We will discuss a recent, much simplified version of the proof.