00:00:00 / 00:00:00

We will discuss various techniques that have been introduced to establish non-trivial dynamical properties of solutions to the 2d Euler equation, particularly infinite-time singularity formation.The first lecture will be devoted to basic examples of Arnold's stability theorems as well as proofs of unbounded gradient growth in the 2d Euler equation.The second lecture will be devoted to a different type of argument for unbounded gradient growth of the vorticity based on establishing unbounded gradient growth of the trajectory map along with a Baire-Category argument.The third lecture will be devoted to a recent result on the stability of shearing and various applications.Some papers that might be helpful: 1. S. Denisov, Infinite superlinear growth of the gradient for the two-dimensional Euler equation 2. T. Drivas and T. Elgindi, Singularity formation in the incompressible Euler equation in finite and infinite time. 3. T. Drivas, T. Elgindi, and I. Jeong, Twisting in Hamiltonian Flows and Perfect Fluids 4. A. Kiselev, V. Sverak, Small scale creation for solutions of the incompressible two dimensional Euler equation 5. H. Koch, Transport and Instability for Perfect fluids 6. N. Nadirashvili, Wandering solutions of Euler's D-2 equation

Informations sur la vidéo

  • Date de captation 13/06/2023
  • Date de publication 09/12/2025
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis