00:00:00 / 00:00:00

Structure of supersingular elliptic curve isogeny graphs

De Renate Scheidler

Apparaît dans la collection : AGCT 2025 - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT 2025 - Arithmétique, Géométrie, Cryptographie et Théorie des Codes

Supersingular elliptic curve isogeny graphs have isomorphism classes of supersingular elliptic curves over a finite field as their vertices and isogenies of some fixed degree between them as their edges. Due to their apparent "random" nature, supersingular isogeny graphs - which are optimal expander graphs - have been used as a setting for certain cryptographic schemes that are resistant to attacks by quantum computers. Hidden structures in these graphs may have implications to the security of these systems. In this talk, we analyze a number of graph theoretic structural properties of supersingular isogeny graphs over a finite field $\mathbb{F}_{p^2}$ and their subgraphs induced by the vertices defined over $\mathbb{F}_p$. This is joint work with Sarah Arpin (Virginia Tech) and our jointly supervised undergraduate student Taha Hedayat (University of Calgary).

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20363403
  • Citer cette vidéo Scheidler, Renate (10/06/2025). Structure of supersingular elliptic curve isogeny graphs. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20363403
  • URL https://dx.doi.org/10.24350/CIRM.V.20363403

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis