00:00:00 / 00:00:00

Some questions on the Brownian Map motivated by its higher-genus analogues

De Guillaume Chapuy

Apparaît dans la collection : Random Geometry / Géométrie aléatoire

Several operations of combinatorial surgery can be used to relate maps of a given genus g to maps of genus g' is smaller than g. One of them is the Tutte/Lehman-Walsh decomposition, but more advanced constructions exist in the combinatorial toolbox, based on the Marcus-Schaeffer/ Miermont or the trisection bijections. At the asymptotic level, these constructions lead to surprising relations between the enumeration of maps of genus g, and the genus 0 Brownian map. I will talk about some fascinating identities and (open) problems resulting from these connections, related to Voronoi diagrams, 'W-functionals', and properties of the ISE measure. Although the motivation comes from 'higher genus', these questions deal with the usual Brownian map as everyone likes it. This is not very new material, and a (mostly French) part of the audience may have heard these stories one million times. But still I hope it will be interesting to advertise them here. In particular, I do not know if recent 'Liouville-based' approaches have anything to say about all this.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19884603
  • Citer cette vidéo Chapuy, Guillaume (20/01/2022). Some questions on the Brownian Map motivated by its higher-genus analogues. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19884603
  • URL https://dx.doi.org/10.24350/CIRM.V.19884603

Bibliographie

  • CHAPUY, Guillaume. The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees. Probability Theory and Related Fields, 2010, vol. 147, no 3, p. 415-447. - http://dx.doi.org/10.1007/s00440-009-0211-0
  • CHAPUY, Guillaume. On tessellations of random maps and the $$ t_g $$ tg-recurrence. Probability Theory and Related Fields, 2019, vol. 174, no 1, p. 477-500. - http://dx.doi.org/10.1007/s00440-018-0865-6
  • ADDARIO-BERRY, Louigi, ANGEL, Omer, CHAPUY, Guillaume, et al. Voronoi tessellations in the CRT and continuum random maps of finite excess. In : Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2018. p. 933-946. - https://doi.org/10.1137/1.9781611975031.60

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis