00:00:00 / 00:00:00

Score matching for simulating sub-Riemannian diffusion bridge processes

De Karen Habermann

Apparaît dans la collection : Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne

Simulation of conditioned diffusion processes is an essential tool in inference for stochastic processes, data imputation, generative modelling, and geometric statistics. Whilst simulating diffusion bridge processes is already difficult on Euclidean spaces, when considering diffusion processes on Riemannian manifolds the geometry brings in further complications. In even higher generality, advancing from Riemannian to sub-Riemannian geometries introduces hypoellipticity, and the possibility of finding appropriate explicit approximations for the score, the logarithmic gradient of the density, of the diffusion process is removed. We handle these challenges and construct a method for bridge simulation on sub-Riemannian manifolds by demonstrating how recent progress in machine learning can be modified to allow for training of score approximators on sub-Riemannian manifolds. Since gradients dependent on the horizontal distribution, we generalise the usual notion of denoising loss to work with non-holonomic frames using a stochastic Taylor expansion, and we demonstrate the resulting scheme both explicitly on the Heisenberg group and more generally using adapted coordinates. Joint work with Erlend Grong (Bergen) and Stefan Sommer (Copenhagen).

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20272303
  • Citer cette vidéo Habermann, Karen (26/11/2024). Score matching for simulating sub-Riemannian diffusion bridge processes. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20272303
  • URL https://dx.doi.org/10.24350/CIRM.V.20272303

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis