Questions about the holomorphic group action dynamics on a natural family of affine cubic surfaces

De Roland Roeder

Apparaît dans la collection : 2024 - T2 - WS2 - Group actions with hyperbolicity and measure rigidity

I will describe the dynamics by the group of holomorphic automorphisms of the affine cubic surfaces $$S_{A,B,C,D} = \{(x,y,z) \in \mathbb{C}^3 : \textrm{ } x^2 + y^2 + z^2 +xyz = Ax + By+Cz+D},$$ where $A,B,C,$ and $D$ are complex parameters. This group action describes the monodromy of the famous Painlevè 6 Equation as well as the natural dynamics of the mapping class group on the $\mathrm{SL}(2,\mathbb{C})$ character varieties associated to the once punctured torus and the four times punctured sphere. For these reasons it has been studied from many perspectives by many people including Bowditch, Goldman, Cantat-Loray, Cantat, Tan-Wong-Zhang, Maloni-Palesi-Tan, and many others.

In this talk I will describe my recent joint with Julio Rebelo and I will focus on several interesting open questions that arose while preparing our work "Dynamics of groups of automorphisms of character varieties and Fatou/Julia decomposition for Painlevé 6" and during informal discussions with many people.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2024.T2.WS2.004
  • Citer cette vidéo Roeder, Roland (27/05/2024). Questions about the holomorphic group action dynamics on a natural family of affine cubic surfaces. IHP. Audiovisual resource. DOI: 10.57987/IHP.2024.T2.WS2.004
  • URL https://dx.doi.org/10.57987/IHP.2024.T2.WS2.004

Bibliographie

  • Julio Rebelo, Roland Roeder / Questions about the dynamics on a natural family of affine cubic surfaces arxiv:2307.10962
  • Julio Rebelo, Roland Roeder / Dynamics of groups of automorphisms of character varieties and Fatou/Julia decomposition for Painlevé 6 arxiv:2104.09256

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis