![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Frieze patterns from a geometric point of view: projective geometry and difference equations
De Valentin Ovsienko
Apparaît dans la collection : 6th International conference on uniform distribution theory - UDT2018 / 6e Colloque international sur la théorie de la répartition uniforme - UDT2018
The notion of quasi-random graphs was introduced in 1987 by F. R. K. Chung, R. L. Graham and R. M. Wilson, resp. A. Thomason. It has been shown that there is a strong connection between this notion and the pseudorandomness of (finite) binary sequences. This connection can be utilized for constructing large families of quasi-random graphs by considering graphs defined by a circular adjacency matrix whose first column is a binary sequence with strong pseudo-random properties. Starting out from this construction principle one may extend, generalize and sharpen some definitions and results on quasi-randomness of graphs.