00:00:00 / 00:00:00

Privacy-preserving Analysis of Correlated data

De Kamalika Chaudhuri

Apparaît dans la collection : 2016 - T1 - WS5 - Secrecy and privacy theme

Many modern machine learning applications involve private and sensitive data that are highly correlated. Examples are mining of time series of physical activity measurements, or mining user data from social networks. Unfortunately, differential privacy, the standard notion of privacy in statistical databases, does not apply directly to such data, and as a result, there is a need for privacy mechanisms that work on correlated data and can still provide privacy. In this talk, we consider Pufferfish, a generalization of differential privacy, that applies to correlated data. We provide novel privacy mechanisms for Pufferfish, and establish performance guarantees on them. Finally we look at a case study – analyzing aggregate statistics of a time series of physical activity measurements – with Pufferfish privacy.

Informations sur la vidéo

  • Date de captation 30/03/2016
  • Date de publication 14/04/2016
  • Institut IHP
  • Licence CC BY-NC-ND
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis