00:00:00 / 00:00:00

Prime, Knots and the Adele Class Space

De Alain Connes

Apparaît dans la collection : Physical Mathematics : Celebration of Albert Schwarz’s 70 Years in Science

We show that the scaling site and its periodic orbits of length log p offer a geometric framework for the well-known analogy between primes and knots. The role of the maximal abelian cover of the scaling site is played by the adele class space which is the quotient of adeles by the action of rational numbers by multiplication. The inverse image of the periodic orbit $C_p$ is canonically isomorphic to the mapping torus of the multiplication by the Frobenius at $p$ in the abelianized étale fundamental group of the spectrum of the ring $Z$ localized at $p$, thus exhibiting the linking of p with all other primes. We give a functorial construction of finite covers of the scaling site associated to finite abelian extension of $Q$. These covers share the same ramification as the field extension, and the monodromy of the periodic orbit $C_p$ in the cover corresponds to the Frobenius$(p)$ element of the Galois group. This is joint work with C. Consani.

Informations sur la vidéo

  • Date de captation 14/06/2024
  • Date de publication 15/06/2024
  • Institut IHES
  • Licence CC BY-NC-ND
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis