00:00:00 / 00:00:00

Perturbations of the holomorphic functional calculus: differential operators versus general sectorial operators

De Pierre Portal

Apparaît dans la collection : Banach spaces and their applications in analysis / Espaces de Banach et applications à l'analyse

Nigel Kalton played a prominent role in the development of a holomorphic functional calculus for unbounded sectorial operators. He showed, in particular, that such a calculus is highly unstable under perturbation: given an operator $D$ with a bounded functional calculus, fairly stringent conditions have to be imposed on a perturbation $B$ for $DB$ to also have a bounded functional calculus. Nigel, however, often mentioned that, while these results give a fairly complete picture of what is true at a pure operator theoretic level, more should be true for special classes of differential operators. In this talk, I will briefly review Nigel's general results before focusing on differential operators with perturbed coefficients acting on $L_p(\mathbb{R}^{n})$. I will present, in particular, recent joint work with $D$. Frey and A. McIntosh that demonstrates how stable the functional calculus is in this case. The emphasis will be on trying, as suggested by Nigel, to understand what makes differential operators so special from an operator theoretic point of view.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.18665003
  • Citer cette vidéo Portal, Pierre (13/01/2015). Perturbations of the holomorphic functional calculus: differential operators versus general sectorial operators. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18665003
  • URL https://dx.doi.org/10.24350/CIRM.V.18665003

Bibliographie

  • Axelsson, A., Keith, S., & McIntosh, A. (2006). Quadratic estimates and functional calculi of perturbed Dirac operators. Inventiones Mathematicae, 163(3), 455-497 - http://dx.doi.org/10.1007/s00222-005-0464-x
  • Carleson, L. (1962). Interpolation of bounded analytic functions and the corona problem. Annals of Mathematics. Second Series, 76, 547-599 - http://dx.doi.org/10.2307/1970375
  • Cohn, W., & Verbitsky, I. (2000). Factorization of tent spaces and Hankel operators. Journal of Functional Analysis, 175(2), 308-329 - http://dx.doi.org/10.1006/jfan.2000.3589
  • Coifman, R.R., Meyer, Y., & Stein, E.M. (1985). Some new function spaces and their applications to harmonic analysis. Journal of Functional Analysis, 62(2), 304-335 - http://dx.doi.org/10.1016/0022-1236(85)90007-2
  • Cowling, M., Doust, I., McIntosh, A., & Yagi, A. (1996). Banach space operators with a bounded $H^{\infty}$ functional calculus. Journal of the Australian Mathematical Society (Series A), 60(1), 51-89 - http://dx.doi.org/10.1017/s1446788700037393
  • Frey, D., McIntosh, A., & Portal, P. (2014). Conical square function estimates and functional calculi for perturbed Hodge-Dirac operators in $L^p$. <arXiv:1407.4774> - http://arxiv.org/abs/1407.4774v2
  • Hytönen, T., & McIntosch, A. (2010). Stability in p of the $H^{\infty}$-calculus of first-order systems in $L^p$. In A. Hassell, A. McIntosh, & R. Taggart (Eds.), The AMSI-ANU workshop on spectral theory and harmonic analysis. Proceedings of the workshop, Canberra, Australia, July 13–17, 2009 (pp. 167-181). Canberra: Australian National University. (Proceedings of the Centre for Mathematics and its Applications, 44) - https://www.zbmath.org/?q=an:1252.47014
  • Hytönen, T., McIntosh, A., & Portal, P. (2008). Kato's square root problem in Banach spaces. Journal of Functional Analysis, 254(3), 675-726 - http://dx.doi.org/10.1016/j.jfa.2007.10.006
  • Kalton, N.J. (2007). Perturbations of the $H^{\infty}$-calculus. Collectanea Mathematica, 58(3), 291-325 - https://eudml.org/doc/42036

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis