![[1241] Théorie de l’homotopie motivique et groupes d’homotopie stables, d’après Morel–Voevodsky, Isaksen–Wang–Xu, ...](/media/cache/video_light/uploads/video/Bourbaki.png)

[1241] Théorie de l’homotopie motivique et groupes d’homotopie stables, d’après Morel–Voevodsky, Isaksen–Wang–Xu, ...
De Frédéric Déglise
Apparaît dans la collection : 2023 - T2 - Higher structures in geometry and mathematical physics
1 - Introduction to operads
2 - Rational homotopy theory. Sullivan models. Applications to operads
3 - Mapping spaces and homotopy automorphism spaces of operads. Relationship with Grothendieck-Teichmüller groups. Applications to embedding calculus
B. Fresse : Homotopy of operads & Grothendieck-Teichmüller groups / Mathematical Surveys and Monographs, vol. 217, American Mathematical Society (2017).
B. Fresse, V. Turchin and T. Willwacher : The rational homotopy of mapping spaces of E${}_n$ operads / Preprint arXiv:1703.06123 (2017).