![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Prime numbers : new perspectives / Nombres premiers : nouvelles perspectives
Given an additive function $f$ and a multiplicative function $g$, let $E(f,g;x)=#\left \{ n\leq x:f(n)=g(n) \right }$ We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that $E(\varepsilon ,g;x)\gg \frac{x}{\left ( \log \log x\right )^{1+\varepsilon }}$, while we prove that $E(\varepsilon ,g;x)=o(x)$ as $x\rightarrow \infty$ for every multiplicative function $g$.