On the multiplicity-freeness property of cohomology spaces and the visibility of group actions

De Yuichiro Tanaka

Apparaît dans la collection : 2025 - T1 - WS1 - Intertwining operators and geometry

With the aim of uniform treatment of multiplicity-free representations of Lie groups, T. Kobayashi introduced the notion of visible action for holomorphic actions of Lie groups on complex manifolds. His propagation theorem of the multiplicity-freeness property produces various kinds of multiplicity-free theorems for unitary representations realized in the space of holomorphic sections of an equivariant holomorphic vector bundle whose base space admits a visible action of a Lie group. Kobayashi has indicated two directions of generalizations of his multiplicity-free theorem. One is a generalization to infinite dimensional manifolds and has been done by Miglioli and Neeb. The other is a generalization to cohomology spaces, which is the main concern of this talk.

I would like to talk about a cohomology version of Kobayashi's theorem and its application to multiplicity-free restrictions of Zuckerman derived functor modules to reductive subgroups.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2025.T1.WS1.019
  • Citer cette vidéo Tanaka, Yuichiro (24/01/2025). On the multiplicity-freeness property of cohomology spaces and the visibility of group actions. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T1.WS1.019
  • URL https://dx.doi.org/10.57987/IHP.2025.T1.WS1.019

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis