00:00:00 / 00:00:00

On the mass of asymptotically hyperbolic manifolds and initial data set

De Anna Sakovich

Apparaît dans la collection : Geometry and analysis on non-compact manifolds / Géométrie et analyse sur les variétés non compactes

A complete Riemannian manifold is called asymptotically hyperbolic if its ends are modeled on neighborhoods of infinity in hyperbolic space. There is a notion of mass for this class of manifolds defined as a coordinate invariant computed in a fixed asymptotically hyperbolic end and measuring the leading order deviation of the geometry from the background hyperbolic metric in the end. Asymptotically hyperbolic manifolds arize naturally in mathematical general relativity, in particular, as slices of asymptotically Minkowski spacetimes, in which case the mass of the slice coincides with the Bondi mass of the spacetime. Having reviewed these and related concepts, we will discuss our proof of the positive mass theorem in the asymptotically hyperbolic setting, which relies on the original ideas of Schoen and Yau and involves a blow-up analysis of the so-called Jang equation, a geometric PDE of mean curvature type.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19902403
  • Citer cette vidéo Sakovich, Anna (28/03/2022). On the mass of asymptotically hyperbolic manifolds and initial data set. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19902403
  • URL https://dx.doi.org/10.24350/CIRM.V.19902403

Bibliographie

  • SAKOVICH, Anna. The Jang equation and the positive mass theorem in the asymptotically hyperbolic setting. Communications in Mathematical Physics, 2021, vol. 386, no 2, p. 903-973. - http://doi.org/10.1007/s00220-021-04083-1

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis