![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Additive Combinatorics / Combinatoire additive
T.C. Brown and A.R. Freedman proved that the set $\mathcal{P}_{2}$ of products of two primes contains no dense cluster; technically, $\mathcal{P}_{2}$ has a zero upper Banach density, defined as $\delta^{²}(\mathcal{P}_{2}) =\lim_{H\mapsto \infty} \limsup_{x\mapsto \infty} \frac{1}{H} Card \{n\in \mathcal{P}_{2}:x< n\leq x+H}$. Pramod Eyyunni, Sanoli Gun and I jointly studied the local behaviour of the product of two shifted primes $\mathcal{Q}_{2}=\{(q-1)(r-1):q,r \, primes}$. Assuming a classical conjecture of Dickson, we proved that $\delta^{²}(\mathcal{Q}_{2}) = 1/6$. Notice that we know no un-conditional proof that $\delta^{²}(\mathcal{Q}_{2})$ is positive. The application, which was indeed our motivation, concerns the study of the local behaviour of the set $\mathcal{V}$ of values of Euler’s totient function. Assuming Dickson’s conjecture, we prove that $\delta^{²}(\mathcal{V})\geq 1/4$. The converse inequality $\delta^{²}(\mathcal{V})\leq 1/4$ had been proved in the previous millenium by K. Ford, S. Konyagin and C. Pomerance.