On the existence of Monge maps for Gromov-Wasserstein problems

De Théo Lacombe

Apparaît dans la collection : 2022 - T3 - WS3 - Measure-theoretic Approaches and Optimal Transportation in Statistics

The Gromov-Wasserstein (GW) problem provides a way to compare probability measures supported on (possibly) different spaces. It relies on a quadratic minimization problem over the transportation polytope using a cost function over each space. As for the optimal transportation (OT) problem, it is natural to study the structure of minimizers of GW, in particular to wonder whenever they are deterministic (i.e. induced by a map between the spaces). In this talk, we will characterize GW minimizers for two cost functions introduced in the literature, and prove that some of them are actual maps following some specific structure. In addition, we will provide numerical evidence for situations where the map structure does not hold, suggesting the sharpness of our assumptions.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T3.WS3.004
  • Citer cette vidéo Lacombe Théo (22/11/2022). On the existence of Monge maps for Gromov-Wasserstein problems. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T3.WS3.004
  • URL https://dx.doi.org/10.57987/IHP.2022.T3.WS3.004

Bibliographie

  • T. Dumont, T. Lacombe, F-X. Vialard / On The Existence Of Monge Maps For The Gromov-wasserstein Distance. arXiv preprint arXiv:2210.11945

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis