00:00:00 / 00:00:00

On the Bloch–Kato Conjecture for some four-dimensional symplectic Galois representations

De Naomi Sweeting

Apparaît dans la collection : Arithmetic and Diophantine Geometry, via Ergodic Theory and o-minimality

The Bloch–Kato Conjecture predicts a relation between Selmer ranks and orders of vanishing of L-functions for Galois representations arising from etale cohomology of algebraic varieties. In this talk, I’ll describe results towards this conjecture in ranks 0 and 1 for the self-dual Galois representations that come from Siegel modular forms on GSp(4) with parallel weight (3, 3); these contribute to cohomology of classical Siegel threefolds. The key step in the proof is a construction of auxiliary ramified Galois cohomology classes, which then give bounds on Selmer groups. The ramified classes come from level-raising congruences and the geometry of special cycles on Shimura varieties.

Informations sur la vidéo

  • Date de captation 11/09/2025
  • Date de publication 17/09/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis