![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Given a finite set of primes $S$ and a m-tuple $(a_{1},...,a_{m})$ of positive, distinct integers we call the m-tuple $S$-Diophantine, if for each 1 ≤ i < j ≤ m the quantity $a_{i}a_{j}+1$ has prime divisors coming only from the set $S$. In this talk we discuss the existence of m-tuples if the set of primes $S$ is small. We will discuss recent results concerning the case that $|S| = 2$ and $|S| = 3$.