00:00:00 / 00:00:00

On not the rational dualizing module for $\text{Aut}(F_n)$

De Zachary Himes

Bestvina--Feighn proved that $\text{Aut}(F_n)$ is a rational duality group, i.e. there is a $\mathbb{Q}[\text{Aut}(F_n)]$-module, called the rational dualizing module, and a form of Poincar\'e duality relating the rational cohomology of $\text{Aut}(F_n)$ to its homology with coefficients in this module. Bestvina--Feighn's proof does not give an explicit combinatorial description of the rational dualizing module of $\text{Aut}(F_n)$. But, inspired by Borel--Serre's description of the rational dualizing module of arithmetic groups, Hatcher--Vogtmann constructed an analogous module for Aut(F_n) and asked if it is the rational dualizing module. In work with Miller, Nariman, and Putman, we show that Hatcher--Vogtmann's module is not the rational dualizing module.

Informations sur la vidéo

  • Date de captation 28/06/2022
  • Date de publication 03/12/2025
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis