On maximally hypoelliptic differential operators

De Omar Mohsen

Apparaît dans la collection : 2025 - T1 - WS3 - Analysis on homogeneous spaces and operator algebras

The class of maximally hypoelliptic differential operators is a large class of differential operators which contains elliptic operators as well as Hörmander’s sum of squares. I will present our work where we define a principal symbol generalising the classical principal symbol for elliptic operators which should be thought of as the analogue of the principal symbol in sub-Riemannian geometry. Our main theorem is that maximal hypoellipticity is equivalent to invertibility of our principal symbol, thus generalising the main regularity theorem for elliptic operators and confirming a conjecture of Helffer and Nourrigat. While defining our principal symbol, we will answer the question: What is the tangent space in sub-Riemman geometry in the sense of Gromov? If time permits, I will also talk about the heat kernel of maximally hypoelliptic differential operators. This is partly joint work with Androulidakis and Yuncken.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2025.T1.WS3.017
  • Citer cette vidéo Mohsen, Omar (28/03/2025). On maximally hypoelliptic differential operators. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T1.WS3.017
  • URL https://dx.doi.org/10.57987/IHP.2025.T1.WS3.017

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis