00:00:00 / 00:00:00

Number of solutions to a special type of unit equations in two unknowns

De István Pink

Apparaît dans la collection : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire

For any fixed coprime positive integers a, b and c with min{a, b, c} > 1, we prove that the equation $a^{x}+b^{y}=c^{z}$ has at most two solutions in positive integers x, y and z, except for one specific case which exactly gives three solutions. Our result is essentially sharp in the sense that there are infinitely many examples allowing the equation to have two solutions in positive integers. From the viewpoint of a well-known generalization of Fermat’s equation, it is also regarded as a 3-variable generalization of the celebrated theorem of Bennett [M.A.Bennett, On some exponential equations of S.S.Pillai, Canad. J. Math. 53(2001), no.2, 897–922] which asserts that Pillai’s type equation $a^{x}-b^{y}=c$ has at most two solutions in positive integers x and y for any fixed positive integers a, b and c with min {a, b} > 1. In this talk we give a brief summary of corresponding earlier results and present the main improvements leading to this definitive result. This is a joint work with T. Miyazaki.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19688803
  • Citer cette vidéo Pink, István (26/11/2020). Number of solutions to a special type of unit equations in two unknowns. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19688803
  • URL https://dx.doi.org/10.24350/CIRM.V.19688803

Bibliographie

  • BENNETT, Michael A. On some exponential equations of SS Pillai. Canadian Journal of Mathematics, 2001, vol. 53, no 5, p. 897-922. - https://doi.org/10.4153/CJM-2001-036-6
  • Hu, Yongzhong; Le, Maohua; An upper bound for the number of solutions of ternary purely exponential Diophantine equations II. Publ. Math. Debrecen 95 (2019), no. 3-4, 335–354. - https://doi.org/10.5486/PMD.2019.8444

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis