00:00:00 / 00:00:00

Multiple scaling dimensions from operator covariance in Monte Carlo simulations

De Anders Sandvik

Apparaît dans la collection : Fuzzy Sphere Meets Conformal Bootstrap 2025

In classical and quantum Monte Carlo simulations of critical systems, the focus is often on the standard critical exponents, which correspond to the relevant scaling dimensions of the underlying continuum field theory. I will discuss a method by which multiple scaling dimensions can be computed efficiently bu diagonalizing a covariance matrix. While such an approach is common for extracting low-lying levels in the spectrum of a Hamiltonian, I show that the eigenvalues also disentangle scaling dimensions in the regime where they exhibit power-law decays. I will illustrate the method with the 2D and 3D classical Ising models, the Blume-Capel model at its tricritical point, as well as 1D quantum systems. The method should be useful for further studying what appears to be an SO(5) "deconfined" multi-critical point in the setting of J-Q models.

Informations sur la vidéo

  • Date de captation 02/06/2025
  • Date de publication 20/06/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis