00:00:00 / 00:00:00

Maximally predictive ensemble dynamics from data

De Antonio Carlos Costa

Apparaît dans la collection : 2022 - T1 - WS2 - Mathematical modeling and statistical analysis in neuroscience

We leverage the interplay between microscopic variability and macroscopic order to connect physical descriptions across scales directly from data, without underlying equations. We reconstruct a state space by concatenating measurements in time, building a maximum entropy partition of the resulting sequences, and choosing the sequence length to maximize predictive information. Trading non-linear trajectories for linear, ensemble evolution, we analyze reconstructed dynamics through transfer operators. The evolution is parameterized by a transition time $\tau$: capturing the source entropy rate at small $\tau$ and revealing timescale separation with collective, coherent states through the operator spectrum at larger $\tau$. Applicable to both deterministic and stochastic systems, we illustrate our approach through the Langevin dynamics of a particle in a double-well potential and the Lorenz system. Applied to the behavior of the nematode worm $C. elegans$, we derive a “run-andpirouette” navigation strategy directly from posture dynamics which is orders of magnitude faster. We demonstrate how sequences simulated from the ensemble evolution recover effective diffusion in the worm’s centroid trajectories and introduce a top-down, operator-based clustering which reveals subtle subdivisions of the “run” behavior.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS2.008
  • Citer cette vidéo Carlos Costa, Antonio (01/02/2022). Maximally predictive ensemble dynamics from data. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS2.008
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS2.008

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis