00:00:00 / 00:00:00

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove Gromov’s precompactness theorem for sequences of manifolds with a Ricci lower bound. We will also see on examples what type of degeneration can occur when considering these « Ricci limit spaces », we will in particular encounter curvature blow up and volume collapsing. One of the major point in the study of these limit spaces is to understand which results on smooth manifolds with a Ricci lower bound carry on to the limit spaces, we will give an introduction to this topic by outlining the proof by Cheeger and Colding of the splitting theorem for limit spaces.

Informations sur la vidéo

  • Date de captation 13/06/2016
  • Date de publication 04/02/2026
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis